9.2.3. Path

9.2.3.1. Bulge

Let \(\mathbf{P}_0\), \(\mathbf{P}_1\), \(\mathbf{P}_2\) the vertices and \(R\) the bulge radius.

The deflection \(\theta = 2 \alpha\) at the corner is

\[\mathbf{D}_1 \cdot \mathbf{D}_0 = (\mathbf{P}_2 - \mathbf{P}_1) \cdot (\mathbf{P}_1 - \mathbf{P}_0) = \cos(\pi - \theta)\]

The bisector direction is

\[\mathbf{Bis} = \mathbf{D}_1 - \mathbf{D}_0 = (\mathbf{P}_2 - \mathbf{P}_1) - (\mathbf{P}_1 - \mathbf{P}_0) = \mathbf{P}_2 -2 \mathbf{P}_1 + \mathbf{P}_0\]

Bulge Center is

\[\mathbf{C} = \mathbf{P}_1 + \frac{R}{\sin \alpha} \mathbf{Bis}\]

Extremities are

\[\begin{split}\begin{align} \mathbf{P}_1' &= \mathbf{P}_1 - \frac{R}{\tan \alpha} \mathbf{D}_0 \\ \mathbf{P}_1'' &= \mathbf{P}_1 + \frac{R}{\tan \alpha} \mathbf{D}_1 \end{align}\end{split}\]